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Abstract

We propose to perform turbulent flow simulations in such manner that the difference operators do have the same

symmetry properties as the underlying differential operators, i.e., the convective operator is represented by a skew-

symmetric coefficient matrix and the diffusive operator is approximated by a symmetric, positive-definite matrix.

Mimicking crucial properties of differential operators forms in itself a motivation for discretizing them in a certain

manner. We give it a concrete form by noting that a symmetry-preserving discretization of the Navier–Stokes equations

is stable on any grid, and conserves the total mass, momentum and kinetic energy (for the latter the physical dissipation

is to be turned off, of coarse). Being stable on any grid, the choice of the grid may be based on the required accuracy

solely, and the main question becomes: how accurate is a symmetry-preserving discretization? Its accuracy is tested for a

turbulent flow in a channel by comparing the results to those of physical experiments and previous numerical studies.

The comparison is carried out for a Reynolds number of 5600, which is based on the channel width and the mean bulk

velocity (based on the channel half-width and wall shear velocity the Reynolds number becomes 180). The comparison

shows that with a fourth-order, symmetry-preserving method a 64 � 64 � 32 grid suffices to perform an accurate

numerical simulation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

More than one and a half century ago Claude Navier (1822) and George Stokes (1845) derived an ex-

cellent mathematical model for turbulent flow. �Their� equations state that (in the absence of compress-

ibility) the fluid velocity u and pressure p satisfy
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otuþ ðu � rÞu� 1

Re
r � ruþrp ¼ 0; r � u ¼ 0; ð1Þ

where the parameter Re denotes the Reynolds number.

Turbulence is basically the combination of nonlinear transport and dissipation of energy. Very crudely

put, energy is convected from the main flow into the large eddies, and from them into the next smaller

eddies, and so on until it comes within the reach of dissipation. In the absence of external sources (such as

body or boundary forces) the rate of change of the total energy is neither influenced by convective transport

nor by pressure differences; it is solely determined by dissipation. This basic physical property can readily be

deduced from the symmetries of the differential operators in the Navier–Stokes equations (1).
The total energy of the flow ðu; uÞ is defined in terms of the usual scalar product. The evolution can be

obtained by differentiating ðu; uÞ with respect to time and rewriting otu with the help of Eq. (1). In this way,

we get

d

dt
ðu; uÞ ¼ �ððu � rÞu; uÞ � ðu; ðu � rÞuÞ þ 1

Re
ððr � ru; uÞ þ ðu;r � ruÞÞ � ðrp; uÞ � ðu;rpÞ:

Integrating the linear and trilinear forms in the right-hand side by parts, ignoring any boundary contri-
butions, we obtain: ðrp; uÞ ¼ �ðp;r � uÞ and ððu � rÞv;wÞ ¼ �ðv; ðu � rÞwÞ, see also [1] for instance. In

terms of the differential operators these fundamental properties read

ðu � rÞ	 ¼ �ðu � rÞ and r	 ¼ �r: ð2Þ

As a result of these (skew-)symmetries the convective- and pressure-dependent terms cancel and the rate of

change of the total energy reduces to

d

dt
ðu; uÞ ¼ � 2

Re
ðru;ruÞ6 0: ð3Þ

In a discrete setting the energy also evolves according to Eq. (3) with u replaced by the discrete velocity, and

r by its discrete approximation, provided the discretizations of the differential operators also possesses the

(skew-)symmetry expressed in Eq. (2). Under this condition, the energy of any discrete solution is conserved

when the flow is inviscid, and decreases in time when dissipation is present. Stated otherwise, a symmetry-

preserving, spatial discretization of the Navier–Stokes equations is unconditionally stable and conservative.
With this in mind, we have developed second- and fourth-order versions, wherein the convective operator

ðu � rÞ is approximated by a skew-symmetric discrete operator, and the approximation of the diffusive

operator �r � r is symmetric and positive-definite.

1.1. 1D preview

As a preview of things to come we consider the discretization of a first-order derivative in one spatial

dimension. In mathematical terms: given three values of a smooth function u, say ui�1 ¼ uðxi�1Þ, ui ¼ uðxiÞ
and uiþ1 ¼ uðxiþ1Þ with xi�1 < xi < xiþ1, find an approximation of the spatial derivative of u at xi. Almost

any textbook on numerical analysis answers this question by combining Taylor-series expansions of u
around x ¼ xi in such a manner that as many as possible low-order terms cancel. After some algebra this

results into the second-order accurate approximation

oxuðxiÞ 

dx2

i uiþ1 þ dx2
iþ1 � dx2

i

� �
ui � dx2

iþ1ui�1

dxiþ1dxiðdxiþ1 þ dxiÞ
; ð4Þ

where the grid spacing is denoted by dxi ¼ xi � xi�1. Approximation (4) may also be derived by constructing

a parabola through the three given data points and differentiating that parabola at x ¼ xi.
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To analyze the conservation and stability properties of the discretization given by (4), we consider the

convection–diffusion equation

otuþ �uuoxu� oxxu=Re ¼ 0; ð5Þ

where the convective transport velocity �uu is taken constant, for simplicity. In matrix-vector notation, the

spatial discretization of Eq. (5) may be written as

X0

duh
dt

þ C0ð�uuÞuh þD0uh ¼ 0; ð6Þ

where the discrete velocities ui constitute the vector uh, the diagonal matrix X0 is built of the spacings of the

mesh: ðX0Þi;i ¼ 1
2
ðxiþ1 � xi�1Þ; the tridiagonal matrices C0ð�uuÞ and D0 represent the convective and diffusive

operator, respectively.

In the absence of diffusion, that is for D0 ¼ 0, the energy kuhk2 ¼ u	hX0uh of any solution uh of the

dynamical system (6) is conserved if and only if the right-hand side of

d

dt
kuhk2 ¼ �u	hðC0ð�uuÞ þ C	

0ð�uuÞÞuh

is zero. This conservation property holds (for any uh) if and only if the coefficient matrix C0ð�uuÞ is skew-

symmetric,

C0ð�uuÞ þ C	
0ð�uuÞ ¼ 0; ð7Þ

i.e., the discrete operator C0ð�uuÞ has to inherit the skew-symmetry of the continuous convective derivative

ðu � rÞ, see Eq. (2).

We see immediately that the discretization given by (4) leads to a coefficient matrix with nonzero di-

agonal entries (for nonuniform grids). Hence, the traditional approach described by (4) violates the skew-
symmetry condition (7). Thus, if the discretization scheme is constructed to minimize the local truncation

error, the skew-symmetry of the convective operator is lost on nonuniform grids, and quantities that are

conserved in the continuous formulation, like the kinetic energy, are not conserved in the discrete formulation.

Not conserved means that the energy is either systematically damped (as in upwind methods) or need be

damped explicitly to ensure stability. Anyhow, as artificial dissipation inevitable interferes with the subtle

balance between convective transport and physical dissipation, especially at the smallest scales of motion,

the essence of turbulence is strained. This forms our main motivation to investigate symmetry-preserving

discretization for direct numerical simulation (DNS) of turbulent flow. Rather than concentrating on re-
ducing local truncation error, we select the discretization on physical grounds, and thus attain to

�uuoxuðxiÞ 
 �uu
uiþ1 � ui�1

xiþ1 � xi�1

¼ X�1
0 C0ð�uuÞuh

� �
i
: ð8Þ

The entries of the tridiagonal matrix C0ð�uuÞ are now given by C0ð�uuÞi;i�1 ¼ � 1
2
�uu, C0ð�uuÞi;i ¼ 0 and

C0ð�uuÞi;iþ1 ¼ 1
2
�uu. Hence, C0ð�uuÞ satisfies (7).

There are various ways to derive the approximation (8). In a finite-element-setting, for instance, the

skew-symmetric formulation follows from a Galerkin projection on the space spanned by the piecewise

linear functions /i with /iðxiÞ ¼ 1 and /iðxjÞ ¼ 0 for i 6¼ j, provided that the corresponding mass matrix is
lumped on the main diagonal.

The two ways of discretization, given by Eqs. (4) and (8), are illustrated in Fig. 1. Perhaps the symmetry-

preserving discretization seems not so accurate at first sight, as the derivative is simply approximated by

drawing a straight line from ðxi�1; ui�1Þ to ðxiþ1; uiþ1Þ. The local truncation error is indeed only first-order

(unless the grid is almost uniform). Yet, the order of the local truncation error is not decisive. Given
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stability, a second-order local truncation error forms a sufficient, but not a necessary, condition for the
solution to be second-order, as is emphasized by Manteufel and White [2]. They have rigorously proven

that the approximation (8) yields second-order accurate solutions on uniform as well as on nonuniform meshes.

Diffusion is discretized in the same vein. The resulting coefficient matrix D0 is positive-definite, like the

underlying differential operator �oxx:

D0 ¼
1

Re
D	

0K
�1
0 D0;

where the difference matrix D0 is defined by ðD0uhÞi ¼ ui � ui�1, and the nonzero entries of the diagonal
matrix K0 read ðK0Þi;i ¼ dxi. Now, the symmetric part of C0ð�uuÞ þD0 is only determined by diffusion, and

hence is positive-definite. The energy of any solution uh of the semi-discrete system (6) evolves like in the

continuous case; compare Eq. (3) to

d

dt
u	hX0uh
� �

¼ð6Þþð7Þ � u	hðD0 þD	
0Þuh 6 0;

where the right-hand side is zero if and only if uh lies in the null space of D0 þD	
0. So, in conclusion, since

the energy kuhk2 ¼ ðu	hX0uhÞ does not increase in time, a stable solution can be obtained on any grid.

Note that the matrix C0ð�uuÞ þD0 is regular, because all eigenvalues lie in the stable half-plane. This is

important for the relationship between the global and local truncation error. In the stationary case, for

instance, the global truncation error is equal to the product of the inverse of C0ð�uuÞ þD0 and the local

truncation error. Therefore, a (nearly) singular discrete operator can destroy favorable properties of the

local truncation error. Examples of this (for non-symmetry-preserving discretizations!) can be found in [3].

1.2. Higher-order discretization

Higher-order discretization methods are usually more efficient for DNS than low-order discretizations.

Therefore, we will next turn Eq. (6) into a fourth-order method. To that end we write down a similar

equation on a two times larger control volume

X2

duh
dt

þ C2ð�uuÞuh þD2uh ¼ 0; ð9Þ

where X2 is a diagonal matrix with entries 1
2
ðxiþ2 � xi�2Þ. The convective term is given by ðC2ð�uuÞuhÞi ¼

1
2
�uuðuiþ2 � ui�2Þ and the diffusive matrix D2 is constructed out of ðD2uhÞi ¼ uiþ1 � ui�1 and ðK2Þii ¼

xiþ1 � xi�1.

Fig. 1. Two ways of approximating oxu. In the left-hand figure the derivative is approximated by means of a Lagrangian interpolation,

that is by Eq. (4). In the right-hand figure the symmetry-preserving discretization (8) is applied.

346 R.W.C.P. Verstappen, A.E.P. Veldman / Journal of Computational Physics 187 (2003) 343–368



The leading term in the discretization error can be removed through a Richardson extrapolation from

the pair (6)–(9). Since the errors in these expressions are of third order, on a uniform grid this would

mean to make a combination 23� Eq. (6) minus Eq. (9). On a nonuniform grid one would be tempted to

tune the weights, 8 and )1, to the actual mesh sizes, but this breaks the symmetry. Therefore, we take

the weights independent of the grid location, and hence equal to the uniform weights. In this way the

discretization of the convective derivative becomes ð8X0 � X2Þ�1ð8C0 � C2Þuh. Or, written out per ele-

ment,

oxuðxiÞ 

�uiþ2 þ 8uiþ1 � 8ui�1 þ ui�2

�xiþ2 þ 8xiþ1 � 8xi�1 þ xi�2

: ð10Þ

Alternatively, this approximation may also be derived by means of the coordinate transformation

x ¼ xðnÞ, which maps the nonuniform grid in x onto a uniform grid in n. Prior to discretization, we rewrite

the (partial) derivative of u with respect to x as a quotient of derivatives with respect to n

ou
ox

¼ ou
on

dn
dx

¼ ou
on

�
dx
dn

:

The two n-derivatives in the right-hand side are discretized on the n-grid, which has a uniform spacing

denoted by h. Neglecting fourth-order terms in

ou
on

ðniÞ ¼
�uiþ2 þ 8uiþ1 � 8ui�1 þ ui�2

12h
þ Oðh4Þ

and

dx
dn

ðniÞ ¼
�xiþ2 þ 8xiþ1 � 8xi�1 þ xi�2

12h
þ Oðh4Þ;

gives the approximation (10). This alternative derivation illustrates the fourth-order accuracy of the skew-

symmetric discretization (10) on nonuniform grids. Therewith it founds our choice for taking constant

weights in the Richardson extrapolation. On uniform grids we obtain, of course, the usual fourth-order
method, but on nonuniform grids the method differs! For practical experiences with the second-order,

symmetry-preserving discretization method we refer to [3]. Experiences with the fourth-order, symmetry-

preserving discretization (10) can be found in Section 4.1.

It goes without saying that both stability and conservation properties have a long standing in the

analysis of discretization methods. Recently, conservation properties of numerical schemes for the (in-

compressible) Navier–Stokes equations are also pursued by other researchers, in particular at Stanford

University [4–6], at CERFACS [7] and at Delft University [8,9].

Morinishi et al. [4] have considered a family of higher-order discretization schemes for incompressible
flow that almost/fully conserve mass, momentum and kinetic energy. On a uniform grid, their fully con-

servative, finite-difference approximation of the convective terms in the Navier–Stokes equations (given by

Eq. (101) in [4]) is identical to our fourth-order discretization. The current issue is how to generalize this

fully conservative, fourth-order scheme to nonuniform grids while preserving the conservation properties as

well as the (formal) accuracy. At this point the approaches diverge. On nonuniform grids, Morinishi et al.

prefer a nonconservative scheme (referred to as Adv.-S4-S in their paper) that preserves the formal, fourth-

order accuracy. Vasilyev [5] also adopts this starting-point. He generalizes the schemes of Morinishi et al. to

nonuniform meshes while maintaining the formal, fourth-order accuracy (by means of a mapping tech-
nique). However, the conservation properties are sacrificed. Vasilyev�s schemes do not simultaneously

conserve momentum and energy. Depending on the choice made for the discretization of the convective

term, conservation of either momentum or energy in addition to mass is achieved in [5]. As explained in the
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1D preview, we do not strive for a minimal local truncation error, but aim to preserve the conservation

properties, by preserving the symmetry of the underlying differential operators.

Nicoud [6] concerns a low-Mach number approximation for the Navier–Stokes equations where the

energy conservation is violated unless an approximate state equation is used. Ducros et al. [7] deal with

compressible flow. They extend Jameson�s second-order finite volume method [10] to a family of higher-

order �skew-symmetric-like� centered schemes. At Delft University [8,9], a variant of our symmetry-pre-

serving discretization for collocated grids has been developed. Last, but not least, although not yet applied

to the Navier–Stokes equations, we like to mention both the procedure for designing by rote finite-dif-
ference schemes that inherit energy conservation from conservative p.d.e.�s by Furihata [11] and the mi-

metic method by Hyman et al. [12–14] for constructing finite-difference approximations that retain/mimic

the main properties of the continuum problem to be solved.

The paper is organized as follows. The symmetry-preserving discretization method is outlined in Section

2. We describe a second- and a fourth-order version, discuss their conservation and stability properties, and

end Section 2 with the incorporation of boundary conditions. Because we want to apply our method to

turbulent flow, we need a time-integration technique too. The one-leg method that we have used is briefly

sketched in Section 3. Having set the method, the accuracy is tested for two examples in Section 4. To start,
we consider a one-dimensional convection–diffusion equation of which an exact solution is known. After

that, the accuracy is illustrated for a fully developed, turbulent channel flow (at a Reynolds number of 5600,

based on the channel width and the mean bulk velocity; or 180, based on the channel half-width and wall

shear velocity) by comparing the results to those of physical experiments and previous numerical studies.

The symmetry-preserving discretization method has also been applied to more complex turbulent flows

with heat transfer. For results thereof, we refer to a forthcoming, companion paper [15]. Results of complex

flow simulations with a predecessor of the present method can be found in [16,17].

2. Symmetry-preserving spatial discretization

In the introductory section, we saw that conservation properties and stability are directly related to the
symmetry of the underlying differential operators. In this section, we will work this out for the incom-

pressible Navier–Stokes equations, where we will restrict ourselves to two spatial dimensions to limit the

length of the presentation; the extension to 3D is straightforward.

2.1. Basic, second-order method

On a uniform grid the traditional aim, minimize the local truncation error, need not break the sym-

metries of the convective and diffusive operators in the Navier–Stokes equations. The well-known scheme

of Harlow and Welsh [18] forms an example of this. We will generalize Harlow and Welsh�s scheme to

nonuniform grids in such a manner that the symmetry remains unbroken. The notation used subsequently

in this section is the same as in [18]. The setting is illustrated in Fig. 2.

2.1.1. Convective discretization

To prepare for the skew-symmetric, finite-volume discretization of the convective derivative, we recall

the transport theorem: for any function f of x and t, we have

d

dt

Z
X
f dV ¼

Z
X

of
ot

dV þ
Z
oX

f u � ndS; ð11Þ

where X is an arbitrary part of the fluid at a particular instant of the time t. The unit vector n denotes the

outward normal on the surface oX of X. The (scalar or vector) function f in (11) can have several meanings
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depending on what is transported. Taking f equal to the mass density of the fluid gives the law of con-

servation of mass. For an incompressible fluid, it states that the net mass flux through the faces of any

control volume Xi;j ¼ ½xi�1; xi� � ½yj�1; yj� is zero,

�uui;j þ �vvi;j � �uui�1;j � �vvi;j�1 ¼ 0; ð12Þ

where �uui;j denotes the mass flux through the face y ¼ yj of the grid cell Xi;j and �vvi;j stands for the mass flux

through the grid face x ¼ xi:

�uui;j ¼
Z yj

yj�1

uðxi; y; tÞdy and �vvi;j ¼
Z xi

xi�1

vðx; yj; tÞdx: ð13Þ

The combination (12) and (13) does not contain a discretization error, since the integrals in (13) have not

yet been discretized. We postpone their discretization until later in this section. Until then we view the

velocities ðui;j; vi;jÞ as the unknowns and the mass fluxes ð�uui;j; �vvi;jÞ as being given such that the constraint (12)

holds.

The transport of momentum of a region X in an incompressible fluid is obtained if f in Eq. (11) is

replaced by the velocity. As mass and momentum are transported at equal velocity, the mass fluxes are used

to discretize the transport velocity of momentum. Thus, the (spatial) discretization of the transport of the u-

component of momentum of a region Xiþ1=2;j ¼ ½xi�1=2; xiþ1=2� � ½yj�1; yj� becomes (see also Fig. 3)

jXiþ1=2;jj
dui;j
dt

þ �uuiþ1=2;juiþ1=2;j þ �vviþ1=2;jui;jþ1=2 � �uui�1=2;jui�1=2;j � �vviþ1=2;j�1ui;j�1=2: ð14Þ

Fig. 3. The control volume Xiþ1=2;j for the discrete, horizontal velocity ui;j.

Fig. 2. The location of the discrete velocities.
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The first term in (14) represents the discretization of the volume integral in the right-hand side of Eq.

(11); the other terms form the approximation of the surface integral in (11) with f ¼ u. The non-integer

indices in (14) refer to the faces of Xiþ1=2;j. For example, ui�1=2;j stands for the u-velocity at the interface of

Xi�1=2;j and Xiþ1=2;j. The velocity at a control face is approximated by the average of the velocity at both

sides of it:

uiþ1=2;j ¼
1

2
ðuiþ1;j þ ui;jÞ and ui;jþ1=2 ¼

1

2
ðui;jþ1 þ ui;jÞ: ð15Þ

Substituting the interpolation rule (15) into the discretization (14) gives

jXiþ1=2;jj
dui;j
dt

þ 1

2
ð�uuiþ1=2;j þ �vviþ1=2;j � �uui�1=2;j � �vviþ1=2;j�1Þui;j þ

1

2
�uuiþ1=2;juiþ1;j �

1

2
�uui�1=2;jui�1;j

þ 1

2
�vviþ1=2;jui;jþ1 �

1

2
�vviþ1=2;j�1ui;j�1: ð16Þ

In addition to the set of equations for the u-component of the velocity, there is an analogous set for the v-
component:

jXi;jþ1=2j
dvi;j
dt

þ 1

2
ð�vvi;jþ1=2 þ �uui;jþ1=2 � �vvi;j�1=2 � �uui�1;jþ1=2Þvi;j þ

1

2
�vvi;jþ1=2vi;jþ1 �

1

2
�vvi;j�1=2vi;j�1

þ 1

2
�uui;jþ1=2viþ1;j �

1

2
�uui�1;jþ1=2vi�1;j: ð17Þ

We conceive Eqs. (16) and (17) as expressions for the velocities, where the mass fluxes �uu and �vv form the

coefficients. Thus, in the absence of any (in- or external) forces, we can write the (semi-)discretization of the

transport equation in matrix-vector notation as

X1

duh
dt

þ C1ð�uuÞuh ¼ 0; ð18Þ

where uh denotes the discrete velocity-vector (which consists of both the ui;j�s and vi;j�s), X1 is a (positive-

definite) diagonal matrix representing the sizes of the control volumes jXiþ1=2;jj and jXi;jþ1=2j, whereas C1ð�uuÞ
is built from the flux contributions through the control faces, i.e., C1 depends on the mass fluxes �uu and �vv at

the control faces.

From a physical point of view, Eq. (18) must conserve the discrete energy u	hX1uh in time. As explained in

the introductory section, this conservation property is directly related to the skew-symmetry of the con-

vective operator: the energy of any solution uh of Eq. (18) is conserved,

d

dt
u	hX1uh
� �

¼ �u	hðC1ð�uuÞ þ C	
1ð�uuÞÞuh ¼ 0;

if and only if the coefficient matrix C1ð�uuÞ is skew-symmetric:

C1ð�uuÞ þ C	
1ð�uuÞ ¼ 0: ð19Þ

2.1.2. Skew-symmetry of convective derivative

Condition (19) is verified in two steps. To start, we consider the off-diagonal elements. The matrix

C1ð�uuÞ � diagðC1ð�uuÞÞ is skew-symmetric if and only if the weights in the interpolations of the discrete ve-

locities are taken constant. To illustrate this, we consider the general interpolation rule

uiþ1=2;j ¼ ð1 � xi;jÞuiþ1;j þ xi;jui;j;
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instead of (15), where the coefficient xi;j may depend on the local mesh sizes. By substituting this inter-

polation rule into Eq. (14) we see that the coefficient of uiþ1;j becomes ð1 � xi;jÞ�uuiþ1=2;j, while the term

ui�1=2;j�uui�1=2;j in (14) with i replaced by iþ 1 yields the coefficient �xi;j�uuiþ1=2;j for ui;j. For skew-symmetry,

these two coefficients should be of opposite sign. Ergo, we should have

ð1 � xi;jÞ�uuiþ1=2;j ¼ xi;j�uuiþ1=2;j;

for all mass fluxes �uuiþ1=2;j. This can only be achieved when the weight xi;j is taken equal to the uniform

weight xi;j ¼ 1=2, hence independent of the grid location. Therefore we take constant weights in Eq. (15),
also on nonuniform grids. Stated from a physical point of view the convective flux through the common

interface between two neighboring control volumes has to be computed independent of the control volume

in which it is considered.

Next, we consider the diagonal of C1. In the notation above, we have suppressed the argument �uu of C1,

because C1 � diagðC1Þ is skew-symmetric for all �uu. The interpolation rule for the mass fluxes �uu and �vv
through the faces of the control volumes is determined by the requirement that the diagonal of C1 has to be

zero. The diagonal coefficient in (16) is given by

1

2
ð�uuiþ1=2;j þ �vviþ1=2;j � �uui�1=2;j � �vviþ1=2;j�1Þ: ð20Þ

This coefficient equals the average of the net mass fluxes through the faces of the grid volumes Xi;j and

Xiþ1;j—hence equals zero according to Eq. (12)—if the interpolation of the mass fluxes to the faces of a u-cell

is performed with constant weights:

�uuiþ1=2;j ¼
1

2
ð�uuiþ1;j þ �uui;jÞ and �vviþ1=2;j ¼

1

2
ð�vviþ1;j þ �vvi;jÞ: ð21Þ

It goes without saying that this interpolation rule is also applied in the j-direction, so that the diagonal

coefficient in (17) is zero too. In summary, the coefficient matrix C1 is skew-symmetric if Eq. (12) holds, and

if the discrete velocities uh and fluxes �uu are interpolated to the surfaces of control cells with weights 1
2
, as in

Eqs. (15) and (21).

2.1.3. The discrete divergence and gradient

Obviously, the mass flux �uu need be expressed in terms of the discrete velocity vector uh to close the system

of equations (18). The coefficient matrix C1ð�uuÞ becomes a function of the discrete velocity uh then. We will

make liberal use of its name, and denote the resulting coefficient matrix by C1ðuhÞ ¼ C1ð�uuðuhÞÞ. The matrix

C1ðuhÞ is skew-symmetric for any relation between �uu and uh. We relate the mass fluxes �uu to the discrete

velocity uh by means the mid-point rule:

�uui;j ¼ ðyj � yj�1Þui;j and �vvi;j ¼ ðxi � xi�1Þvi;j: ð22Þ

Substituting these approximations into Eq. (12) gives the discrete continuity constraint, which confines the

discrete velocity to M1uh ¼ given, where the right-hand side consists of prescribed mass fluxes through the

boundaries of the computational domain. To keep the expressions simple, we take the right-hand side equal

to zero,

M1uh ¼ 0; ð23Þ

i.e., we restrict ourselves to impervious or periodical boundaries. Note that the coefficient matrix M1

represents the discretization of the divergence operator, integrated over the control volumes, see Eqs. (12)

and (13).

The pressure gradient in the Navier–Stokes equations (1) is discretized with the help of the symmetry

relation (2). According to Eq. (2) the continuous gradient operator equals the negative of the transpose of
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the divergence, i.e., any velocity field u and pressure p satisfy ðrp; uÞ ¼ �ðp;r � uÞ. Now, let ph denote the

discrete pressure and G1ph the discrete pressure gradient. Then, the above relation holds also for the dis-

cretization, that is

ðG1phÞ
	X1uh ¼ p	hG

	
1X1uh ¼ �p	hM1uh;

if the gradient operator is approximated by

G1 ¼ �X�1
1 M	

1: ð24Þ

Note that the gradient matrix, describing the integration of the pressure gradient over the control volumes

X1, is given by �M	
1. Because the discrete gradient inherits also the boundary conditions from the discrete

divergence, we need not specify boundary conditions for the pressure. As usual, see e.g. [18], we compute

the pressure from a Poisson equation, where the Laplacian is approximated by the matrix �M1X
�1
1 M	

1,
which is symmetric and negative-definite, just like the continuous Laplace operator.

2.1.4. Diffusive discretization

The method for discretizing the Laplacian in the Poisson equation for the pressure is also applied to

discretize the diffusive term in the Navier–Stokes equations. In short, the diffusive operator is viewed as the

product of two first-order differential operators, a divergence and a gradient. The divergence is discretized

and the discrete gradient becomes the transpose of the discrete divergence (multiplied by a diagonal

scaling). This construction leads to a symmetric, positive-definite, approximation of the diffusive operator

�r � r.

Unfortunately, we cannot re-use the approximation M1X
�1
1 M	

1, since the grid is staggered. Due to the

staggering of the grid the control volumes for the velocity components ui;j and vi;j differ from the control
volumes Xi;j on which coefficient matrix M1 is based. Therefore, we have to introduce the matrices Mu

1 and

Mv
1. They stand for the discrete integration of the divergence over the control volumes for u and v, re-

spectively. For example, the diffusive flux through the faces of the control volume Xiþ1=2;j of ui;j reads

�//iþ1=2;j � �//i�1=2;j þ �wwi;j � �wwi;j�1;

where / ¼ oxu=Re and w ¼ oyu=Re. The surface integrals (denoted by an overbar) are approximated ac-

cording to

�//iþ1=2;j ¼ ðyj � yj�1Þ/iþ1=2;j and �wwi;j ¼ ðxiþ1=2 � xi�1=2Þwi;j:

In matrix-vector notation, the diffusive flux through the faces of u-cells is given by Mu
1/h, where the vector

/h consists of the /iþ1=2;j�s and wi;j�s. The gradient operator relating / and w to the velocity component u is

discretized by �ðXu
1Þ

�1ðMu
1Þ

	
, where the entries of the diagonal matrix Xu

1 are given by jXi;jj and

jXiþ1=2;jþ1=2j. In this way we obtain

/iþ1=2;j ¼
1

Re
uiþ1;j � ui;j
xiþ1 � xi

and wi;j ¼
1

Re
ui;jþ1 � ui;j

yjþ1=2 � yj�1=2

:

The diffusive flux through v-cells is approximated similarly. Thus, the discretization of the diffusive term in

the Navier–Stokes equations becomes X�1
1 D1uh, where the symmetric, positive-definite coefficient matrix D1

is given by

D1 ¼
1

Re
D	

1K
�1
1 D1 ð25Þ

with D	
1 ¼ diagðMu

1;M
v
1Þ and K1 ¼ diagðXu

1;X
v
1Þ.
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2.1.5. Discrete Navier–Stokes equations

By adding viscous and pressure forces to the discrete transport equation (18), we obtain the following

semi-discrete representation of the incompressible Navier–Stokes equations

X1

duh
dt

þ C1ðuhÞuh þD1uh �M	
1ph ¼ 0; M1uh ¼ 0: ð26Þ

In detail, the evolution of the discrete velocity ui;j reads

dxiþ1=2dyj
dui;j
dt

þ 1

4
ðdyjui;j þ dyjuiþ1;jÞuiþ1;j �

1

4
ðdyjui;j þ dyjui�1;jÞui�1;j þ

1

4
ðdxivi;j þ dxiþ1viþ1;jÞui;jþ1

� 1

4
ðdxivi;j�1 þ dxiþ1viþ1;j�1Þui;j�1 � ð �//iþ1=2;j � �//i�1=2;j þ �wwi;j � �wwi;j�1Þ þ dyjpiþ1;j � dyjpi;j ¼ 0;

where dxi ¼ xi � xi�1, dyj ¼ yj � yj�1, and dxiþ1=2 ¼ 1
2
ðdxi þ dxiþ1Þ, see also Fig. 3 for notations.

As will be shown in the next section, this spatial discretization conserves energy (in the absence of

diffusion) as well as mass and momentum.

2.2. Conservation properties and stability

Global conservation laws invoke integrals over the flow domain. These integrals become scalar products

when the flow is discretized. The change of the total mass of the flow, for example, is discretized as the

scalar product of the constant vector 1 (where the dimension equals the number of grid cells) and the

discrete mass flux M1uh. Since this scalar product is zero (because M1uh ¼ 0) the total mass is (trivially)

conserved.
The total amount of momentum is obtained by taking the scalar product of the velocity vector uh with

the vector X11 (where the constant vector now has as many entries as there are control volumes for the

discrete velocity components ui;j and vi;j). The evolution of the total amount of momentum follows

straightforwardly from Eq. (26):

d

dt
ð1	X1uhÞ ¼ �1	ðC1ðuhÞ þD1Þuh þ 1	M	

1ph:

Hence, momentum is conserved provided ðC1ðuhÞ þD1Þ	1 ¼ 0 and the law of conservation of mass is

consistently discretized, that is M11 ¼ 0. The former condition may be split into two conditions, one for

the convective discretization, C	
1ðuhÞ1 ¼ 0, and one for the diffusive discretization, D	

11 ¼ 0. Moreover we

can leave the *�s away, C1ðuhÞ1 ¼ 0 and D11 ¼ 0, since the convective matrix C1ðuhÞ is skew-symmetric

and diffusive matrix D1 is symmetric. So it suffices to verify that the constant vector lies in the null space

of the approximate, convective and diffusive operators. The row-sums of D1 are zero by construction.

Those of C1ðuhÞ can be worked out from Eqs. (14) and (15). Each row-sum of the convective matrix

C1ðuhÞ is equal to two times the corresponding diagonal element, and thus zero, since C1ðuhÞ is skew-
symmetric.

The discretization is set up such that the evolution of the (kinetic) energy u	hX1uh of any solution of Eq.

(26) is governed by

d

dt
u	hX1uh
� �

¼ �u	h C1ðuhÞ
�

þ C	
1ðuhÞ

�
uh � u	h D1

�
þD	

1

�
uh þ u	h M	

1ph
� �

þ M	
1ph

� �	
uh

¼ð19Þ � u	h D1

�
þD	

1

�
uh 6 0;
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where the right-hand side is negative for all uh�s, except those in the null space of D1 þD	
1. The convective

term cancels because C1ðuhÞ is skew-symmetric; the pressure terms cancel (hence, cannot unstabilize

the spatial discretization) because the discrete pressure gradient is related to the transpose of M1, see

Eq. (24).

So, in conclusion, for inviscid flow the energy is conserved, whereas for viscous flow the energy

kuhk2 ¼ u	hX1uh does not increases in time. This implies that the semi-discrete system (26) is stable (in the

energy norm). As solutions can be obtained on any grid, the grid may be chosen on basis of the required

accuracy. But, how accurate is the symmetry-preserving discretization (26)? Before addressing this question
(in Section 4.2), we will further enhance the asymptotic order of convergence.

2.3. Higher-order, symmetry-preserving approximation

To turn Eq. (14) into a higher-order approximation, we write down the transport of momentum of a

region Xð3Þ
iþ1=2;j ¼ ½xi�3=2; xiþ3=2� � ½yj�2; yjþ1�. Here, it may be noted that we cannot blow up the �original�

volumes Xiþ1=2;j by a factor of two (in all directions) since our grid is not collocated. On a staggered grid,

three times larger volumes are the smallest ones possible for which the same discretization rule can be

applied as for the �original� volumes. This yields

jXð3Þ
iþ1=2;jj

dui;j
dt

þ ��uu�uuiþ3=2;juiþ3=2;j þ ��vv�vviþ1=2;jþ1ui;jþ3=2 � ��uu�uui�3=2;jui�3=2;j � ��vv�vviþ1=2;j�2ui;j�3=2; ð27Þ

where

��uu�uui;j ¼
Z yjþ1

yj�2

uðxi; y; tÞdy and ��vv�vvi;j ¼
Z xiþ1

xi�2

vðx; yj; tÞdy: ð28Þ

The velocities at the control faces of the large volumes are interpolated to the control faces in a way similar

to that given by Eq. (15):

uiþ3=2;j ¼
1

2
ðuiþ3;j þ ui;jÞ and ui;jþ3=2 ¼

1

2
ðui;jþ3 þ ui;jÞ: ð29Þ

We conceive Eq. (27) as an expression for the velocities, where the mass fluxes ��uu�uu and ��vv�vv form the coefficients.
Considering it like that, we can recapitulate the equations above (together with the analogous set for the v-
component) by

X3

duh
dt

þ C3ð��uu�uuÞuh; ð30Þ

where the diagonal matrix X3 represents the sizes of the large control volumes and C3 consists of flux

contributions (��uu�uu and ��vv�vv) through the faces of these volumes.
On a uniform grid the local truncation errors in Eqs. (18) and (30) are of the order 2 þ d, where

d ¼ 2 in two spatial dimensions and d ¼ 3 in 3D. The leading term in the discretization error may be

removed through a Richardson extrapolation (just like in [19]). This leads to the fourth-order ap-

proximation

X
duh
dt

þ 32þdC1ð�uuÞ
�

� C3ð��uu�uuÞ
�
uh;

where X ¼ 32þdX1 � X3. More specifically, we replace the second-order discretization (16) by the following

fourth-order convective discretization
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32þd jXiþ1=2;jj
�

� jXð3Þ
iþ1=2;jj

� dui;j
dt

þ 32þd 1

2
ð�uuiþ1=2;j þ �vviþ1=2;j � �uui�1=2;j � �vviþ1=2;j�1Þui;j

þ 32þd 1

2
ð�uuiþ1=2;juiþ1;j � �uui�1=2;jui�1;j þ �vviþ1=2;jui;jþ1 � �vviþ1=2;j�1ui;j�1Þ

� 1

2
ð��uu�uuiþ3=2;j þ ��vv�vviþ1=2;jþ1 � ��uu�uui�3=2;j � ��vv�vviþ1=2;j�2Þui;j

� 1

2
��uu�uuiþ3=2;juiþ3;j

�
� ��uu�uui�3=2;jui�3;j þ ��vv�vviþ1=2;jþ1ui;jþ3 � ��vv�vviþ1=2;j�2ui;j�3

�
:

To eliminate the leading term of the discretization error in the continuity equation, we apply the law of

conservation of mass to Xð3Þ
i;j ¼ ½xi�2; xiþ1� � ½yj�2; yjþ1�:

��uu�uuiþ1;j þ ��vv�vvi;jþ1 � ��uu�uui�2;j � ��vv�vvi;j�2 ¼ 0; ð31Þ

where the fluxes ��uu�uui;j and ��vv�vvi;j are approximated in terms of the discrete velocities ui;j and vi;j, respectively,

��uu�uui;j ¼ ðyjþ1 � yj�2Þui;j and ��vv�vvi;j ¼ ðxiþ1 � xi�2Þvi;j: ð32Þ

That is on a uniform grid, the fluxes ��uu�uui;j and ��vv�vvi;j are approximated by means of the mid-point rule. The

fourth-order approximation of the law of conservation of mass becomes

32þdð�uui;j þ �vvi;j � �uui�1;j � �vvi;j�1Þ � ð��uu�uuiþ1;j þ ��vv�vvi;jþ1 � ��uu�uui�2;j � ��vv�vvi;j�2Þ ¼ 0; ð33Þ

or in matrix-vector notation

Muh ¼ ð32þdM1 �M3Þuh ¼ 0; ð34Þ

where we have summarized the discretization of the law of conservation of mass applied to the volumes Xð3Þ
i;j

by M3uh ¼ 0. The weights 32þd and )1 are to be used on non-uniform grids too, since otherwise the

symmetry of the underlying differential operator is lost.

As noted before, the matrix C1 � diagðC1Þ is skew-symmetric, because the velocities at the control faces

are interpolated with constant coefficients. The same holds for C3. The matrix C3 � diagðC3Þ is skew-

symmetric for all interpolations of ��uu�uu and ��vv�vv to the control faces, since the velocities at the control faces are

interpolated with constant coefficients, see (29). Hence, without diagonal the coefficient matrix

32þdC1ð�uuÞ � C3ð��uu�uuÞ is skew-symmetric.

For skew-symmetry the interpolation of the �uu�s, �vv�s, ��uu�uu�s and ��vv�vv�s to the control faces has to be performed in
such a way that the diagonal entries

32þd 1

2
ð�uuiþ1=2;j þ �vviþ1=2;j � �uui�1=2;j � �vviþ1=2;j�1Þ �

1

2
ð��uu�uuiþ3=2;j þ ��vv�vviþ1=2;jþ1 � ��uu�uui�3=2;j � ��vv�vviþ1=2;j�2Þ ð35Þ

of the convective matrix 32þdC1ð�uuÞ � C3ð��uu�uuÞ become equal to zero, that is equal to linear combinations of

(33). To achieve this, we interpolate �uuiþ1=2;j in the following manner

�uuiþ1=2;j ¼
1

2
að�uuiþ1;j þ �uui;jÞ þ

1

2
ð1 � aÞð�uuiþ2;j þ �uui�1;jÞ; ð36Þ

where a is a constant, and interpolate �vviþ1=2;j, ��uu�uuiþ1=2;j and ��vv�vviþ1=2;j likewise. As in Morinishi et al. [4] we take

a ¼ 9=8 because all interpolations are fourth-order accurate then (on a uniform grid). Note that the
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convective discretization is conservative for any value of a, and fourth-order accurate if a ¼ 9=8. We cannot

take a ¼ 1 (as in the second-order method, see Eq. (21)) since the Richardson extrapolation does not

eliminate the second-order terms in the error in the interpolations of ��uu�uuiþ1=2;j and ��vv�vviþ1=2;j. The interpolation

rule (36) is also applied in the j-direction to approximate the flux through the faces of v-cells. After that the

interpolation rule (36) is applied, and the flux is expressed in terms of the discrete velocity like in (22) and

(32), the coefficient matrix 32þdC1ð�uuÞ � C3ð��uu�uuÞ becomes a function of the discrete velocity vector uh only. We

denote that function by CðuhÞ.
The leading error of the diffusive discretization may be eliminated in two different ways. We may either

resort to

1

Re
32þdD	

1K
�1
1 D1

�
� D	

3K
�1
3 D3

�
;

or take the fourth-order coefficient matrix like

D ¼ 1

Re
32þdD1

�
� D3

�	
32þdK1

�
� K3

��1
32þdD1

�
� D3

�
; ð37Þ

where the difference matrix D3 and the diagonal matrix K3 are the relatives of D1 and K1, respectively, with

the difference that they are defined on 3d-times larger control volumes. The larger number of nonzero

entries may be counted against (37). Yet this drawback is more than counterbalanced when the structure of

the discrete approximation is considered. Like the underlying differential operator r	r ¼ �r � r, the

right-hand side of (37) consists of a gradient matrix, 32þdD1 � D3, and its transpose. For that reason we opt
for the diffusive matrix given by (37). In terms of the abbreviations D ¼ 32þdD1 � D3 and K ¼ 32þdK1 � K3

we have D ¼ D	K�1D=Re. The quadratic form

u	hDuh ¼
1

Re
ðDuhÞ	K�1ðDuhÞ

is non-negative provided that the entries of the diagonal matrix K are non-negative. Here, we assume that

the grid is chosen such that this condition is satisfied. Note that Kii < 0 for some i implies that the grid is so

irregular that is does not make sense to apply a fourth-order method; in that case the second-order method
(26) should be applied. For K > 0, the quadratic form u	hDuh equals zero if and only if Duh ¼ 0, that is if and

only if the discrete gradient of the velocity equals zero. This is precisely the condition that need be satisfied

in the continuous case. Indeed, in the continuous case we have

�
Z

ur � rudV ¼
Z

jruj2 dV ¼ 0;

if and only if ru ¼ 0.
Now, taking all ingredients together, the symmetry-preserving discretization of the Navier–Stokes

equations (1) becomes

X
duh
dt

þ CðuhÞuh þDuh �M	ph ¼ 0; Muh ¼ 0; ð38Þ

where the convective coefficient matrix CðuhÞ is skew-symmetric, like a first-order differential operator, the

discrete diffusive operator D is symmetric and positive-definite, and all terms are consistently discretized,

that is CðuhÞ1 ¼ 0, D1 ¼ 0 and M1 ¼ 0. Repeating the analysis of Section (2.2), for the fourth-order

discretization, shows that the symmetry-preserving discretization (38) is stable and conserves mass, mo-

mentum and energy.
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2.4. Boundary conditions

So far, we have left the boundary conditions out of consideration. Obviously, their numerical treatment

has to maintain the symmetry properties. In case of periodic conditions, the discretization can be extended

up to the boundaries in a natural way. This does not break the symmetries of the coefficient matrices C and

D nor does it conflict with consistency conditions. Thus for periodic boundary conditions both stability and

conservation properties are maintained.

Also for non-periodic boundary conditions, the convective and diffusive differential operators can be

discretized in such a way that their symmetry properties are preserved. Below we will describe a symmetry-

preserving discretization near/at a no-slip boundary. Other types of boundary conditions can be handled in
the same vein.

To start, we consider the discretization of mass fluxes near a no-slip boundary. The situation is sketched

in Fig. 4 (left). In this figure, the wall is given by the grid line j ¼ 0, and the fluid occupies the region j > 0.

Since the wall is impervious, we have

�vvi;0 ¼ ��vv�vvi;0 ¼ 0: ð39Þ

Note that a single overbar denotes the integration over one grid face, see Eq. (13), whereas a double overbar

stands for the integration over three grid faces, see Eq. (28). To apply the discrete law of conservation of

mass up to the wall, we extent the grid by mirroring it in the wall j ¼ 0. Then, for j ¼ 1 the discretization of

the law of conservation of mass (Eq. (33)) becomes

32þdð�uui;1 þ �vvi;1 � �uui�1;1 � �vvi;0Þ � ð��uu�uuiþ1;1 þ ��vv�vvi;2 � ��uu�uui�2;1 � ��vv�vvi;�1Þ ¼ 0;

where the mass flux ��vv�vvi;�1 is located outside of the flow domain. To define the out-of-domain flux ��vv�vvi;�1 we

impose that the net mass flow through the wall-centered control volume ½xi�2; xiþ1� � ½y�1; y1� (depicted in

Fig. 4, right) equals zero, where we assume that the mass flux through faces normal to the wall vanishes
(�uui;1 þ �uui;0 ¼ 0, for any i) because the no-slip condition states that the u-velocity is zero at the mid of these

faces. We therefore define the out-of-domain flux by

��vv�vvi;�1 ¼ ��vv�vvi;1: ð40Þ

Note that this relation defines the boundary treatment for both the continuity constraint Muh ¼ 0 and the

discrete pressure term M	ph.
The discretization of the convective flux near the boundary has to be done such that the skew-symmetry

of C is preserved. Here, we have to distinguish between the wall-normal and tangential velocity, since the

Fig. 4. The left-hand figure depicts the mass fluxes that are used to discretize the law of conservation of mass near the no-slip wall

j ¼ 0. The right-hand figure shows the control volume that is applied to define the out-of-domain mass flux ��vv�vvi;�1.
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velocities are staggered. The tangential velocity ui;j is computed from 3dþ2 Eqs. (14)–(27) for j ¼ 1; 2; 3; . . .
Therefore the last term in Eq. (27), that is the convective flux ��vv�vviþ1=2;j�2ui;j�3=2, need be defined for j ¼ 1 and

j ¼ 3. Note that for j ¼ 2 this flux is evaluated at the wall, and thus given by Eq. (39). The same holds for

the term �vviþ1=2;0ui;1=2 in Eq. (14). Interpolating the velocity as in (29) gives

��vv�vviþ1=2;j�2ui;j�3=2 ¼ ��vv�vviþ1=2;j�2

1

2
ðui;j þ ui;j�3Þ:

The out-of-domain velocity ui;0 (which appears in the expression above for j ¼ 3) is defined by means of the

no-slip condition ui;0 þ ui;1 ¼ 0. The out-of-domain mass flux ��vv�vviþ1=2;�1 is computed according to Eq. (40).

This leads to

��vv�vviþ1=2;j�2ui;j�3=2 ¼
��vv�vviþ1=2;1

1
2
ðui;3 � ui;1Þ for j ¼ 3;

��vv�vviþ1=2;1
1
2
ðui;1 þ ui;�2Þ for j ¼ 1:

(

Hence, the discretization is skew-symmetric if and only if ui;�2 ¼ ui;3.
To compute the normal velocity vi;j near the wall j ¼ 0, we extend the discrete law of conservation of

mass (Eq. (33)) to j ¼ 0 by taking

��uu�uui;0 þ ��uu�uui;1 ¼ 0; �vvi;�1 � �vvi;1 ¼ 0 and ��vv�vvi;�2 � ��vv�vvi;2 ¼ 0: ð41Þ

Now, Eq. (33) holds also for j ¼ 0 (provided that it holds for j ¼ 1) and we need only define the convective

flux

��vv�vvi;j�3=2vi;j�3=2 ¼
1

2
��vv�vvi;j
�

þ ��vv�vvi;j�3

� 1

2
ðvi;j þ vi;j�3Þ for j ¼ 1; 2;

where the out-of-domain mass fluxes ��vv�vvi;�1 and ��vv�vvi;�2 are given by Eq. (40) and (41), respectively. The out-of-

domain velocity vi;�1 is determined with the help of the no-slip condition, vi;�1 þ vi;1 ¼ 0, and vi;�2 follows

from the requirement that the discretization is skew-symmetric. By writing down the discretization

��vv�vvi;j�3=2vi;j�3=2 ¼
1
2
ð��vv�vvi;2 þ ��vv�vvi;1Þ 1

2
ðvi;2 � vi;1Þ for j ¼ 2;

1
2
ð��vv�vvi;1 þ ��vv�vvi;2Þ 1

2
ðvi;1 þ vi;�2Þ for j ¼ 1;

(

we see that vi;�2 has to be taken equal to vi;2.
In summary, like the convective discretization away from the boundary, the discretization near the

boundary is not constructed to minimize the local truncation error. Instead, we have built the no-slip

condition into the coefficient matrix C without violating the skew-symmetry. Consequently, also for no-slip
conditions, the kinetic energy is conserved if D ¼ 0.

The diffusive fluxes through near-wall control faces ought to be discretized such that the resulting co-

efficient matrix D is symmetric and positive-definite. Eq. (37) writes D as D	KD, where K is a positive di-

agonal matrix. Consequently, the matrix D remains symmetric and positive-definite when the discrete no-

slip conditions ui;0 þ ui;1 ¼ 0, ui;�1 þ ui;2 ¼ 0, ui;�2 þ ui;3 ¼ 0, vi;�1 þ vi;1 ¼ 0 and vi;�2 þ vi;2 ¼ 0 are built into

the difference matrix D ¼ 32þdD1 � D3 and Eq. (37) is applied to construct D.

3. Time-integration method

The time-derivative in Eq. (38) has to be replaced by a skew-symmetric discrete operator to preserve the

favorable conservation and stability properties for discrete time too. This can only be achieved when the
time-integration is done implicitly. Introducing the time step dt and denoting the velocity and pressure at
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time t ¼ ndt by unh and pnh, respectively, we may integrate Eq. (38) over one step in time by means of the

midpoint rule, for example, which leads to

X
unþ1
h � unh

dt
þ C u

nþ1=2
h

� �
u
nþ1=2
h þDu

nþ1=2
h �M	p

nþ1=2
h ¼ 0; Munþ1

h ¼ 0;

where the mid-step velocity is given by u
nþ1=2
h ¼ 1

2
ðunþ1

h þ unhÞ. This second-order, skew-symmetric approx-

imation conserves the energy in the absence of diffusion, and is unconditionally stable in the presence of

diffusion. Indeed, taking the inner product with the mid-step velocity gives

unþ1	

h Xunþ1
h � un	h Xunh ¼ �dtunþ1=2	

h ðDþD	Þunþ1=2
h 6 0:

Note that this (in)equality also holds when the convective coefficient matrix is evaluated at the old time level

n, i.e., becomes CðunhÞ. The associated linear method is the simplest—read: cheapest possible—implicit

method. Yet, for the use in direct numerical simulations of turbulent flow the computational costs are

rather high compared to those of explicit methods. In view of the lower costs, we consider explicit methods

in the remainder of this section.

For inviscid flows, we can partially escape from the necessity for treating convection implicit by adopting

the leapfrog method

X
u
nþ1=2
h � u

n�1=2
h

dt
þ C unh

� �
unh �M	pnh ¼ 0; Munþ1

h ¼ 0;

where the pressure pnh is to be computed such that the incompressibility constraint is satisfied at time

t ¼ ðnþ 1Þdt. Now, taking the inner product with unh shows that the quantity unþ1	
h Xunh is conserved in time.

So, if we loosely view this (not necessarily positive) quantity as the �energy�, we have conservation built into

the discrete system. Yet, this statement is not as strong as the results obtained before, because unþ1	
h Xunh is

not a norm. As we do not have a proper energy norm, we do not get unconditional stability from con-
servation of energy: the leapfrog method is stable if and only if the time step is smaller than the largest

(measured in absolute value) eigenvalue of C.

The leapfrog method becomes unstable when diffusion is added. Therefore it need be modified to handle

viscous flow. We consider modifications of the form

X
u
nþbþ1=2
h � u

nþb�1=2
h

dt
þ C unþb

h

� �
unþb
h þDunþb

h �M	pnþb
h ¼ 0: ð42Þ

where the off-step velocities are given by

u
nþbþ1=2
h ¼ b

�
þ 1

2

	
unþ1
h � b

�
� 1

2

	
unh and unþb

h ¼ ð1 þ bÞunh � bun�1:

The incompressibility constraint is treated implicit (as before). Substituting the linear inter-/extrapolations

for the off-step velocities into Eq. (42) yields a family of one-leg methods (so-called because it uses just one
evaluation of the flux per time-step) parameterized by b. Our aim is now to determine b such that the

corresponding method possesses the largest region of stability. Since both the pressure and the incom-

pressibility constraint are treated implicit in time, we may discard them when stability is considered.

Therefore we focus on the one-leg scheme for the simplified, one-dimensional test problem otu ¼ f ðuÞ. For

this problem the one-leg scheme reads

b

�
þ 1

2

	
unþ1 � 2bun þ b

�
� 1

2

	
un�1 ¼ dtf ðð1 þ bÞun � bun�1Þ: ð43Þ
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The temporal discretization (43) is second-order accurate for all b 6¼ �1=3, and third-order accurate when

b ¼ �1=3. The error constant is given by C3 ¼ ð1 þ 3bÞ=6.

Taking b ¼ 1=2, we have a one-leg method which is the twin of Adams–Bashforth. According to Ad-

ams–Bashforth we ought to take 3
2
f ðunÞ � 1

2
f ðun�1Þ instead of f ð3

2
un � 1

2
un�1Þ. These methods are identical if

f is linear, and thus have the same region of linear stability. Differences occur for nonlinear right-hand

sides f .

We look for the one-leg method with the best linear stability properties, where we consider the popular

method of Adams and Bashforth as point of reference. Fig. 5 (left) shows the stability domain of the one-leg
method for b ¼ 0:05 and b ¼ 0:5 (Adams–Bashforth). The stability domain is pressed against the imaginary

axis when b goes to zero. In the limit b ¼ 0 the stability domain is equal to the interval ½�i; i�, i.e., to

leapfrog�s stability region.

The time step dt of an explicit time integration method for a convection–diffusion equation is typically

restricted by a convective stability condition like Udt < dy (where U denotes the absolute maximum of

the velocity and dy stands for the spatial mesh size), and a diffusive stability condition of the form

2dt < Redy2. For the numerical simulation of the flow in the channel at Re ¼ 5600 we use mesh sizes of

the order 5 � 10�3. The maximal velocity U equals one. Hence, the convective stability condition is about
fourteen times stronger than the diffusive condition. Therefore, we look for stability domains which

include eigenvalues k ¼ xþ iy, where the real part x is negative and the absolute value of the imaginary

part y is much larger than the absolute value of the real part. Under these conditions, the one-leg

method with b ¼ 0:05 outperforms Adams–Bashforth. Fig. 5 (right) shows a blow up of the stability

domains of both methods near the positive imaginary axis. The points denoted by A and B lie on the line

jxj : jyj ¼ 1 : 20. The point A lies close to the boundary of the stability domain for b ¼ 0:05; B lies near to

the boundary of the stability domain for b ¼ 0:5. A lies approximately two times as far from the origin

as B. Thus, the time step of the one-leg method with b ¼ 0:05 can be enlarged by a factor of two
compared to Adams–Bashforth. For jxj : jyj ¼ 1 : 10 this factor is about 1.5; for jxj : jyj ¼ 1 : 100 it is

approximately 2.5.

We have carried out a number of numerical test calculations which showed that the one-leg method

with b ¼ 0:05 requires indeed about two times less computational effort than the second-order

method of Adams and Bashforth, whereas the accuracy is as good or better. In practice, we choose the

time-step such that the time-integration becomes unstable when the selected time-step is enlarged by

25%.

Fig. 5. The left picture shows the stability domain of the one-leg method (43) for b ¼ 0:05 and b ¼ 0:5. The right picture shows a blow

up of the stability domains near the positive imaginary axis.
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4. How accurate is the symmetry-preserving discretization?

We will demonstrate the performance of the above second and fourth-order symmetry-preserving dis-

cretization methods with the help of two test-cases. The first test-case is the one-dimensional convection–

diffusion equation (5) for which the steady, analytical solution is known (Section 4.1). The second case deals

with a fully developed channel flow. The unsteady Navier–Stokes equations are solved numerically at a

Reynolds number of Re ¼ 5600, which is based on the mean bulk velocity and the channel height (based on

the channel half-width and wall shear velocity the Reynolds number reads 180). At this Reynolds number
the channel flow has been studied intensively. A large number of numerical results as well as experimental

data is available for comparison (see Section 4.2).

4.1. Comparison with traditional discretization methods

To kick off, the symmetry-preserving discretization is compared with the traditional discretization

methods based on Lagrange interpolation (minimizing local truncation error) for the steady version of the

one-dimensional convection–diffusion equation (5). Since on uniform grids the methods are equal, we

choose an example with a boundary-layer character, requiring grid refinement near the outflow boundary

x ¼ 1. This is achieved by imposing the boundary conditions uð0; tÞ ¼ 0 and uð1; tÞ ¼ 1. The parameters in

Eq. (5) are set equal to �uu ¼ 1 and Re ¼ 1000.

Grid refinement has been carried out on an exponentially stretched grid, with half the grid points in the
thin boundary layer of thickness 10=Re near x ¼ 1. Four discretization methods have been investigated: the

traditional Lagrangian second-order method (2L) and its fourth-order counterpart (denoted by 4L), and

the second-order (2S) and fourth-order (4S) symmetry-preserving methods. For 4L we have implemented

exact boundary conditions to circumvent the problem of a difference molecule that is too large near the

boundary.

We form the vector uexact by restricting the analytical solution of Eq. (5) to the grid points, and monitor

the global discretization error defined by kuh � uexactk (where the norm is the kinetic energy norm). Fig. 6

shows the global error as a function of the mean mesh size 1=N , where N is the number of grid points.
A number of observations can be made.

Fig. 6. The left-hand figure shows the global error as a function of the mean mesh size on an exponential grid with half of the grid

points inside a boundary layer of thickness 10=Re. Four methods are shown: 2L and 4L (second- and fourth-order Lagrangian), 2S and

4S (second- and fourth-order symmetry-preserving). The right-hand figure depicts the number of eigenvalues of the Lagrangian

methods 2L and 4L located in the unstable half-plane. Only the Lagrangian methods are shown, since the symmetry-preserving

discretization keeps all the eigenvalues in the stable half-plane.
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• For all grid sizes the Lagrangian discretization appears to be less accurate than the symmetry-preserving

alternative.

• For coarser grids the fourth-order Lagrangian method is not even as accurate as its second-order La-

grangian relative. Similar observations have been made frequently, and this explains why thus far
fourth-order discretization has not been very popular.

• The symmetry-preserving methods already behave nicely on coarse grids. Moreover they show a regular

monotone behavior upon grid refinement. As in turbulent-flow simulations one will always have to cope

with limitations on the affordable number of grid points, methods that are less sensitive in this respect

are preferable.

• Also note that for a given accuracy (say 10�5), the grid size of the fourth-order symmetry-preserving

method can be chosen roughly three times larger than that of the fourth-order Lagrangian method!

• The fourth-order Lagrangian method nearly breaks down for N ¼ 28 where the stretching factor is 0.72
(which is not extreme). This is due to an eigenvalue moving from the unstable half-plane (for low values

of N ), towards the stable half-plane (for higher N ), which crosses the imaginary axis close to the origin,

making the coefficient matrix almost singular. When one or more eigenvalues of the coefficient matrix

are located in the unstable half-plane, the corresponding time-dependent, semi-discrete system is unsta-

ble, and can not be integrated in the time domain. In the above examples we have computed the discrete

steady-state by a direct matrix solver to avoid this problem.

4.2. A more challenging test-case: fully developed channel flow

The symmetry-preserving discretization is tested for turbulent channel flow. The Reynolds number is set

equal to Re ¼ 5600 (based on the channel width and the bulk velocity), a Reynolds number at which direct

numerical simulations have been performed by several research groups; see [20–22]. Additionally, we can

compare the numerical results to experimental data from Kreplin and Eckelmann [23]. They have measured
the flow in the wall region of a channel at a somewhat higher Reynolds number of approximately 6,600

(based on the channel width and the bulk velocity). Yet, this difference is insignificant: Eckelmann [24]

reports in an earlier paper that the root-mean-squares of fluctuating velocities at Re ¼ 5600 and Re ¼ 6600

collapse onto one curve (provided they are properly normalized by the friction velocity, of coarse).

As usual, the flow is assumed to be periodic in the stream- and spanwise direction. Consequently, the

computational domain may be confined to a channel unit of dimension 2p � 1 � p, where the width of the

channel is normalized. All computations presented in this section have been performed with 64 (uniformly

distributed) streamwise grid points and 32 (uniformly distributed) spanwise points. In the lower-half of the
channel, the wall-normal grid points are computed according to

yj ¼
sinhðcj=NyÞ
2 sinhðc=2Þ with j ¼ 0; 1; . . . ;Ny=2;

where Ny denotes the number of grid points in the wall-normal direction. The stretching parameter c is

taken equal to 6.5. The grid points in the upper-half are computed by means of symmetry.

The temporal integration is performed with the help of the one-leg method that is outlined in Section 3.

The non-dimensional time step is set equal to dt ¼ 1:25 � 10�3. Mean values of computational results are

obtained by averaging the results over the directions of periodicity, the two symmetrical halves of the

channel, and over time. The averaging over time starts after a start-up period. The start-up period as well as
the time-span over which the results are averaged, 1500 time-units (non-dimensionalized by the bulk ve-

locity and the channel width), are identical for all the results shown is this section.

Fig. 7 shows a comparison of the mean velocity profile as obtained from our fourth-order symmetry-

preserving simulation (Ny ¼ 64) with those of direct numerical simulations. The results that we compare
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with have all been obtained by means of spectral methods based on truncated Fourier series in the
streamwise and spanwise direction, and a Chebyshev polynomial expansion in the normal direction. The

computational boxes are precisely, or almost, the same. Yet, the grids used by the spectral methods have 12

times [22], 25 times [21], and 30 times [20] more points than our grid has. In addition, the number of

collocation points in the spectral methods is expanded by a factor of 3/2 before transforming the nonlinear

terms into the physical space to reduce the aliasing error. Nevertheless, the agreement between our, rela-

tively coarse-grid, results and those of the spectral methods is excellent.

To investigate the convergence of the fourth-order method upon grid refinement, we have monitored the

skin friction coefficient Cf as obtained from simulations on five different grids. We will denote these grids by
A, B, C, D and E. Their spacings differ only in the direction normal to the wall. They have Ny ¼ 128 (grid

A), Ny ¼ 96 (B), Ny ¼ 64 (C), Ny ¼ 56 (D) and Ny ¼ 48 (E) points in the wall-normal direction, respectively.

The first (counted from the wall) grid line used for the convergence study is located at yþ1 
 0:72 (grid A),

yþ1 
 0:95 (B), yþ1 
 1:4 (C), yþ1 
 1:6 (D), and yþ1 
 1:9 (E), respectively. Fig. 8 displays the skin friction

Fig. 8. Convergence of the skin friction coefficient Cf upon grid refinement. The figure displays Cf versus the fourth power of the first

grid point yþ1 .

Fig. 7. Comparison of the mean streamwise velocity uþ as function of yþ. The dashed lines represent the law of the wall and the log

law. The markers represent DNS-results that are taken from both the ERCOFTAC Database and the Japanese DNS Data Base of

Turbulent Transport Phenomena.
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coefficient Cf as function of the fourth power of the local grid spacing (measured by yþ1 ). The convergence

study shows that the discretization scheme is indeed fourth-order accurate, on a nonuniform mesh. This

indicates that the underlying physics is resolved when 48 or more grid points are used in the wall normal

direction. The straight line in Fig. 8 is approximately given by Cf ¼ 0:00836 � 0:000004ðyþ1 Þ
4
. The ex-

trapolated value at the crossing with the vertical axis yþ1 ¼ 0 lies in between the Cf reported by Kim et al.

[20] (0.00818) and Dean�s correlation of Cf ¼ 0:073Re�1=4 ¼ 0:00844 [25]. Note that the extrapolation

eliminates the (leading term of the) discretization error in the wall-normal direction, but not the other

discretization errors in space and time.
The convergence of the fluctuating streamwise velocity near the wall (0 < yþ < 20) is presented in Fig. 9.

Here, we have added results obtained on three still coarser grids (with Ny ¼ 32, Ny ¼ 24 and Ny ¼ 16 points

in the wall-normal direction, respectively), since the results on the grids A–E fall almost on top of each

other. The coarsest grid, with only Ny ¼ 16 points to cover the channel width, is coarser than most of the

grids used to perform a large-eddy simulation (LES) of this turbulent flow. Nevertheless, the 64 � 16 � 32

solution is not that far off the solution on finer grids, in the near wall region. Further away from the wall,

the turbulent fluctuations predicted on the coarse grids (Ny 6 32) become too high compared to the fine grid

solutions, as is shown in Fig. 10.
Perhaps, the solution on the 64 � 24 � 32 forms an excellent starting point for a large-eddy simulation.

The root-mean-square of the fluctuating streamwise velocity is not far of the fine grid solution. Viewed

Fig. 9. The root-mean-square velocity fluctuations normalized by the wall shear velocity as function of the wall coordinate yþ on

various grids for yþ 6 20. The markers correspond to the results obtained in the grid points. The solution on the finest grid is rep-

resented by a continuous line.

Fig. 10. The root-mean-square velocity fluctuations normalized by the wall shear velocity for yþ 6 200 on various grids.
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through physical glasses, the energy of the resolved scales of motion, the coarse grid (Ny ¼ 24) solution, is

convected in a stable manner, because it is conserved by the discrete convective operator. Therefore, we

think that the symmetry-preserving discretization forms a solid basis for testing sub-grid scale models. The

discrete convective operator transports energy from a resolved scale of motion to other resolved scales

without dissipating any energy, as it should do from a physical point of view. The test for a sub-grid scale

model then reads: does the addition of the dissipative sub-grid model to the conservative convection of the

resolved scales reduce the error in the computation of urms.

The results for the fluctuating streamwise velocity urms are compared to the experimental data of Kreplin
and Eckelmann [23] and to the numerical data of Kim et al. [20] as well as Gilbert and Kleiser [21] in Fig.

11. This comparison confirms that the fourth-order, symmetry-preserving method is more accurate than the

second-order method. With 48 or more grid points in the wall normal direction, the root-mean-square of

the fluctuating velocity obtained by the fourth-order method is in close agreement with that computed by

Kim et al. [20] for yþ > 20. In the vicinity of the wall (yþ < 20), the velocity fluctuations of the fourth-order

simulation method fit the experiment data nicely, even up to very coarse grids with only 24 grid points in

the wall-normal direction. However, the turbulence intensity in the sub-layer (0 < yþ < 5) predicted by the

simulations is higher than that in the experiment. According to the fourth-order simulation the root-mean-
square approaches the wall like urms 
 0:38yþ (Ny ¼ 64). The exact value of this slope is hard to pin-point

experimentally. Hanratty et al. [26] have fitted experimental data of several investigators, and thus came to

0.3. Most direct numerical simulations yield higher values. Kim et al. [20] and Gilbert and Kleiser [21] have

found slopes of 0.3637 and 0.3824 respectively, which is in close agreement with the present findings.

The normal component of the turbulent intensity is shown in Fig. 12. The results of all three compu-

tations are in good agreement. Yet, the computed level is lower than the measured level. Hence, either all

computations (shown in Fig. 12) predict too low normal fluctuations, or the experiment of Kreplin and

Eckelmann contains an error. Kim et al. [20] suppose that the latter may be the case as measurements of the
normal component are extremely complicated close to a wall. As an example of this, Kim et al. refer to the

comparison made by Finnicum and Hanratty [27], who have compared experimental results of the near-

wall behavior of the fluctuating normal velocity. From that comparison (see Fig. 7 in [27]) Finnicum and

Hanratty concluded that reliable near-wall experiments cannot be made with an X probe. Note that

Kreplin and Eckelmann have used a X probe for the normal component, whereas the streamwise and

spanwise data has been obtained with a V probe. The normal velocity should behave as yþ2 from the wall to

be compatible with the no-slip boundary condition and the continuity equation at the wall. In our simu-

lation, as well as in that of Kim et al., this limiting wall behavior is only visible in a very small layer close to
the wall. The present result indicates vrms 
 0:0075yþ2 (Ny ¼ 64), Kim et al. [20] reported vrms 
 0:009yþ2,

and Finnicum and Hanratty [27] estimated the limiting behavior as vrms 
 0:005yþ2.

Fig. 11. Comparison of the mean-square of the fluctuating streamwise velocity as function of yþ.
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Fig. 13 displays the spanwise component of the velocity fluctuations. As can be seen, the discrepancies

among the computed results is noticeable larger for spanwise component than for the stream- and spanwise

component. Especially the location of the maximum spanwise fluctuation varies fairly. Kim et al. [20]

predict a maximum at yþ 
 35; the result of Gilbert and Kleiser [21] shows a broad plateau of maximum

values for 20 < yþ < 50, whereas our computations reach the maximum at yþ 
 22, which is in close
agreement with the experimental maximum at yþ 
 20.

So, in conclusion, the results of the fourth-order symmetry-preserving discretization agree better with the

available reference data than those of its second-order counterpart, and with the fourth-order method a

64 � 64 � 32 grid suffices to perform an accurate numerical simulation of a turbulent channel flow at

Re ¼ 5600 (where Reynolds number is based on channel width and bulk velocity).

5. Concluding remarks

The smallest scales of motion in a turbulent flow result from a subtle balance between convective

transport and diffusive dissipation. In mathematical terms, the balance is an interplay between two dif-

ferential operators differing in symmetry: the convective derivative is skew-symmetric, whereas diffusion is
governed by a symmetric, positive-definite operator. With this in mind, we have developed a spatial dis-

Fig. 13. Comparison of the mean-square of the fluctuating spanwise velocity.

Fig. 12. Comparison of the mean-square of the fluctuating wall-normal velocity.
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cretization method which preserves the symmetries of the balancing differential operators. That is, con-

vection is approximated by a skew-symmetric discrete operator, and diffusion is discretized by a symmetric,

positive-definite operator. Second-order and fourth-order versions have been developed thus far, applicable

to structured non-uniform grids. The resulting semi-discrete representation conserves mass, momentum and

energy (in the absence of physical dissipation). As the coefficient matrices are stable and non-singular, a

solution can be obtained on any grid, and the main question becomes how accurate is a symmetry-pre-

serving discretization, or stated otherwise, how coarse may the grid be? This question has been addressed

for a turbulent channel flow. The outcomes show that with the fourth-order method a 64 � 64 � 32 grid
suffices to perform an accurate numerical simulation of a turbulent channel flow at Re ¼ 5600, where the

Reynolds number is based on channel width and bulk velocity (which is equivalent to a Reynolds number

of 180, based on the channel half-width and wall shear velocity).

Acknowledgements

The Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF) with
financial support from the Netherlands Organization for Scientific Research (NWO) is gratefully ac-

knowledged for the use of supercomputer facilities.

References

[1] R. Teman, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF regional conference series in applied

mathematics, vol. 66, second ed., SIAM, 1995, p. 13.

[2] T.A. Manteufel, A.B. White Jr., The numerical solution of second-order boundary value problems on nonuniform meshes, Math.

Comput. 47 (1986) 511.

[3] A.E.P. Veldman, K. Rinzema, Playing with nonuniform grids, J. Eng. Math. 26 (1991) 119.

[4] Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, Fully conservative higher order finite difference schemes for incompressible flow,

J. Comp. Phys. 143 (1998) 90.

[5] O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comp. Phys. 157

(2000) 746.

[6] F. Nicoud, Conservative high-order finite-difference schemes for low-Mach number flows, J. Comp. Phys. 158 (2000) 71.

[7] F. Ducros, F. Laporte, T. Soul�eeres, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like

schemes in structured meshes: application to compressible flows, J. Comp. Phys. 161 (2000) 114.

[8] A. Twerda, A.E.P. Veldman, S.W. de Leeuw, High order schemes for colocated grids: preliminary results. In: Proceedings of the

5th Annual Conference of the Advanced School for Computing and Imaging, 1999, p. 286.

[9] A. Twerda, Advanced computational methods for complex flow simulation, Ph.D. Thesis, Delft University of Technology, 2000.

[10] A. Jameson, W. Schmidt, E. Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge–Kutta

Time Stepping, AIAA Paper 81-1259, 1981.

[11] D. Furihata, Finite difference schemes for ou
ot ¼ ð o

oxÞ
a dG

du that inherit energy conservation or dissipation property, J. Comp. Phys. 156

(1999) 181.

[12] J.M. Hyman, R.J. Knapp, J.C. Scovel, High order finite volume approximations of differential operators on nonuniform grids,

Phys. D 60 (1992) 112.

[13] J.E. Castillo, J.M. Hyman, M.J. Shaskov, S. Steinberg, The sensitivity and accuracy of fourth order finite-difference schems on

nonuniform grids in one dimension, Comput. Math. Appl. 30 (1995) 41.

[14] J.M. Hyman, M. Shashkov, Natural discretizations for the divergence, gradient and curl on logically rectangular grids, Comput.

Math. Appl. 33 (1997) 81.

[15] R.W.C.P. Verstappen, R.M. van der Velde, Symmetry-preserving discretization of heat transfer in a complex turbulent flow,

submitted.

[16] R.W.C.P. Verstappen, A.E.P. Veldman, Direct numerical simulation of turbulence at lower costs, J. Eng. Math. 32 (1997) 143.

[17] R.W.C.P. Verstappen, A.E.P. Veldman, Spectro-consistent discretization of Navier–Stokes: a challenge to RANS and LES, J.

Eng. Math. 34 (1998) 163.

[18] F.H. Harlow, J.E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys.

Fluids 8 (1965) 2182.

R.W.C.P. Verstappen, A.E.P. Veldman / Journal of Computational Physics 187 (2003) 343–368 367



[19] M. Antonopoulos-Domis, Large-eddy simulation of a passive scalar in isotropic turbulence, J. Fluid Mech. 104 (1981) 55–79.

[20] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech. 177

(1987) 133.

[21] N. Gilbert, L. Kleiser, Turbulence model testing with the aid of direct numerical simulation results, in: Proceedings of the

Turbulence Shear Flows 8, Paper 26-1, Munich, 1991.

[22] A. Kuroda, N. Kasagi, M. Hirata, Direct numerical simulation of turbulent plane Couette–Poisseuille flows: effect of mean shear

rate on the near-wall turbulence structures, in: F. Durst, et al. (Eds.), Proc. Turb. Shear Flows, vol. 9, Springer, Berlin, 1995, pp.

241–257.

[23] H.P. Kreplin, H. Eckelmann, Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow,

Phys. Fluids 22 (1979) 1233–1239.

[24] H. Eckelmann, The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow, J. Fluid Mech. 65

(1974) 439–459.

[25] R.B. Dean, Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow,

J. Fluids Eng. 100 (1978) 215–223.

[26] T.J. Hanratty, L.G. Chorn, D.T. Hatziavramidis, Turbulent fluctuations in the viscous wall region for Newtonian and drag

reducing fluids, Phys. Fluids 20 (1977) S112.

[27] D.S. Finnicum, T.J. Hanratty, Turbulent normal velocity fluctuations close to a wall, Phys. Fluids 28 (1985) 1654–1658.

368 R.W.C.P. Verstappen, A.E.P. Veldman / Journal of Computational Physics 187 (2003) 343–368


	Symmetry-preserving discretization of turbulent flow
	Introduction
	1D preview
	Higher-order discretization

	Symmetry-preserving spatial discretization
	Basic, second-order method
	Convective discretization
	Skew-symmetry of convective derivative
	The discrete divergence and gradient
	Diffusive discretization
	Discrete Navier-Stokes equations

	Conservation properties and stability
	Higher-order, symmetry-preserving approximation
	Boundary conditions

	Time-integration method
	How accurate is the symmetry-preserving discretization?
	Comparison with traditional discretization methods
	A more challenging test-case: fully developed channel flow

	Concluding remarks
	Acknowledgements
	References


